Theoretische und technische Informatik - ganz praktisch
Herzlich willkommen auf der Question/Answer-Plattform zu Grundlagen der Informatik II. Wir wünschen Ihnen viel Spaß beim Lernen und Diskutieren!
Loggen Sie sich mit Ihrem KIT-Account (u...) ein, um loszulegen!
Beachten Sie auch diese Informationen zum Schnelleinstieg.
(Nicht-KIT-Studierende beachten bitte diese Informationen.)

Beliebteste Tags

verständnis alternativlösung klausur kellerautomat endlicher-automat grammatik regulärer-ausdruck turingmaschine pumpinglemma tipp zahlendarstellung cmos bonusklausur klausurrelevant komplexität schaltwerk binary-decision-diagram deterministisch assembler schaltnetz minimierung sprachen nichtdeterministisch huffman chomsky-normalform fehler-in-aufgabe anwesenheitsübung rechtslinear heimübung flip-flop huffman-kodierung cocke-younger-kasami-algorithmus kontextsensitive-grammatik kontextfreie-grammatik fehlererkennbarkeit hauptklausur vorlesungsfolien polynomialzeitreduktion kontextfreie-sprache faq gleitkommazahl fehlerkorrigierbarkeit rechtslineare-grammatik dateiorganisation cache darstellung-klausur nachklausur xwizard adressierungsarten mealy lambda endliche-automaten konjunktive-normalform pipelining zustände saalübung leeres-wort moore ohne-lösungen betriebssystem speicherorganisation monotone-grammatik 2-komplement hammingzahl lösungsweg fehler pumping-lemma-für-kontextfreie-sprachen pumping-lemma reguläre-sprache monoton kodierung berechenbarkeit klausureinsicht disjunktive-normalform abzählbarkeit info-ii bussysteme rechnerarchitektur entscheidbarkeit komplexitätsklassen chomsky-klassen ableitungsbaum vorlesungsaufzeichnung round-robin aufzählbarkeit minimierung-endlicher-automaten von-neumann-rechner binärzahl entscheidbar programmiersprachen stern-symbol automaten schaltnetze-und-schaltwerke nukit-fragen bewertung zugriffsarten umformung adressierung mengen binär-subtrahieren

Kategorien

1 Pluspunkt 1 Minuspunkt
55 Aufrufe

Hallo,

das Wort = \(0^n 1^n 0^n 1^n \) ist ja willkürlich gewählt, sprich man könnte auch einfach das wort \( 0^n 1^n\) wählen oder?

Das erste Teilwert zu wiederholen ist ja nicht von Bedeutung? (Oder man könnte das Teilwort n-mal wiederholen)

Danke

 

in AU-1-3 von uafjv uafjv Tutor(in) (168k Punkte)  

1 Eine Antwort

0 Pluspunkte 0 Minuspunkte

Das Wort = \(0^n 1^n 0^n 1^n\) ist zwar willkürlich gewählt, aber du kannst nicht das wort \(0^n 1^n\) wählen. Da dieses Wort nicht der Grammatik entspricht. Dein Wort kann nicht in zwei identische Teile aufgeteilt werden. Es sind folgende Worter erlaubt aabbaabb oder abcabc.

Alexander (Tutor)

von uafjv uafjv Tutor(in) (168k Punkte)  
...