Hallo,
deine Frage bezieht sich auf das sogenannte P-NP-Problem, eines der wichtigsten offenen Probleme der Informatik:
-
Für kein NP-vollständiges Problem konnte bisher nachgewiesen werden, dass es in polynomieller Zeit lösbar wäre. (Vermutung(!) die auf Folie 5-42 steht, d.h. P ≠ NP)
-
Falls nur ein einziges dieser Probleme in polynomieller Zeit lösbar wäre, dann wäre jedes Problem in NP in polynomieller Zeit lösbar, was große Bedeutung für die Praxis haben könnte.
Dieses Problem stellt sich also die Frage, in welcher Beziehung die beiden Komplexitätsklassen P und NP zueinander stehen. Unklar ist, ob die beiden Klassen P und NP identisch sind, und damit auch, ob die schwersten Probleme der Klasse NP ebenso effizient wie die der Komplexitätsklasse P gelöst werden können. Um den Begriff des „schwersten Problems in NP“ formal zu fassen, wurde der Begriff NP-schwer eingeführt. Ein Problem ist NP-schwer, wenn seine Lösung (in Polynomialzeit) die Lösung jedes anderen Problems in NP in polynomialer Zeit ermöglichen würde (Polynomialzeitreduktion).
Ein Problem wird als NP-vollständig (vollständig für die Klasse der Probleme, die sich nichtdeterministisch in Polynomialzeit lösen lassen) bezeichnet, wenn es zu den schwierigsten Problemen in der Klasse NP gehört.
Also so wie du gesagt hast: sowohl in NP liegt, als auch NP-schwer ist. Diese wesentliche Eigenschaft NP-vollständiger Probleme bedeutet umgangssprachlich, dass sich das Problem vermutlich(!) nicht effizient lösen lässt, dass also ihre Lösung auf realen Rechnern viel Zeit in Anspruch nimmt. Alle bekannten deterministischen Algorithmen für diese Probleme erfordern exponentiellen Rechenaufwand, und erfahrene Informatiker erwarten, dass es keine effizienteren Algorithmen gibt. Die Bestätigung oder Widerlegung dieser Vermutung ist gerade das sogenannte P-NP-Problem.
Ich hoffe das Beantwortet deine Frage.
LG Julian (Tutor)