Hier muss man mit der Polynomialzeitreduzierbarkeit argumentieren.
Ein Problem X heißt NP-schwer gdw. jedes Problem Q Element NP polynomialzeitreduzierbar auf X ist.
NP-vollständig benötigt zudem noch die Eigenschaft das X Element NP.
Für die beiden trivialen Probleme gilt aber, dass man keine anderen Probleme auf sie reduzieren kann. Das liegt daran, dass entweder alle oder keine Wörter Teil der entsprechenden Sprache {} bzw. E* sind, man findet also keine Elemente, auf die man true bzw. false abbilden kann. Bei der Reduktion müssen wir ja jedes Element x unseres zu reduzierenden Problems A auf ein Element y des Problems {} bzw. E* abbilden, sodass x in A genau dann, wenn y in {} bzw. E*. Für {} finden wir kein Element, falls x in A ist, und für E* finden wir keines, falls x nicht in A ist. Daher ist weder {} noch E* NP-schwer, egal, wie „leicht“ die Probleme aus NP sind.