



19.01.2013

# Lösung zur Bonusklausur über den Stoff der Vorlesung "Grundlagen der Informatik II" (45 Minuten)

| Name:                        | _       |               |         |      |       |      |      |      | •    | Vor          | naı  | me:  | -          |      |      |       |           |                      |
|------------------------------|---------|---------------|---------|------|-------|------|------|------|------|--------------|------|------|------------|------|------|-------|-----------|----------------------|
| MatrNr.                      | : _     |               |         |      |       |      |      |      |      | Ser          | nes  | ter: | : <u>-</u> |      |      |       | _ (WS     | 2012/13)             |
| Ich bestätige<br>Klausurexen |         |               |         |      |       |      |      |      |      | lese         | n u  | nd m | nich       | ı vo | on c | ler   | Vollständ | ligkeit dieses       |
|                              |         |               |         |      |       |      |      |      |      |              |      |      |            |      |      | _     | Klausu    | urteilnehmers<br>rin |
| Anmerkung                    | gen:    |               |         |      |       |      |      |      |      |              |      |      |            |      |      |       |           |                      |
| 1. Legen                     | Sie b   | itte Ih       | ren S   | tud  | iere  | ende | ena  | usv  | veis | be           | reit |      |            |      |      |       |           |                      |
| 2. Bitte ta                  | ragen   | Sie N         | lame,   | Vo   | rna   | ame  | e ur | nd N | Mat  | t <b>r</b> ľ | Vr.  | deut | lich       | ı le | sba  | ır ei | in.       |                      |
| 3. Die fo                    | lgend   | en <b>3</b> A | Aufga   | bei  | ı si  | nd ' | vol  | lstä | ndi  | g zı         | ı be | arbe | eite       | n.   |      |       |           |                      |
| 4. Folger                    | ide H   | ilfsmi        | ttel si | nd   | zug   | ela  | sse  | n: k | ein  | ıe.          |      |      |            |      |      |       |           |                      |
| 5. Täuscl                    | nungs   | versu         | che fi  | ihre | en z  | um   | Αι   | ıssc | hlu  | ıss '        | von  | der  | Kla        | aus  | ur.  |       |           |                      |
| 6. Unlese<br>Wertur          |         |               |         |      |       | _    | -    | chri | ebe  | ene          | Lös  | sung | en         | kö   | nne  | en v  | on der I  | Klausur bzw.         |
| 7. Die Be                    | earbei  | tungs         | zeit b  | eträ | igt 4 | 45 ] | Mir  | nute | en.  |              |      |      |            |      |      |       |           |                      |
| Nur für den P                | rüfer : | :             |         |      |       |      |      |      |      |              |      |      |            |      |      |       |           |                      |
|                              | 1       | 2             | 3       | -    | -     | -    | -    | -    | -    | -            | -    | -    | -          | -    | -    | -     | gesamt    | ]                    |
|                              |         | 1             | 1       | 1    | 1     | 1    |      | 1    |      | 1            | 1    |      |            |      |      |       | 1         | I                    |

## Aufgabenübersicht

| 1) Pumping-Lemma für kontextfreie Sprachen |  |  |  |  |  | 2 |
|--------------------------------------------|--|--|--|--|--|---|
| 2) Kellerautomat                           |  |  |  |  |  | 3 |
| 3) Binary Decision Diagram (BDD)           |  |  |  |  |  | 5 |

#### Aufgabe 1

2013-B-01

#### Pumping-Lemma für kontextfreie Sprachen

Zeigen Sie mithilfe des Pumping-Lemmas, dass die Sprache

$$L = \{a^k b^l c^m \mid k < l < m\}$$

nicht kontextfrei ist.

#### Lösung:

Angenommen, L sei kontextfrei, dann existiert eine Konstante  $n \in \mathbb{N}$ , sodass  $\forall$  Wörter  $z = a^k b^l c^m \in L$  mit k < l < m mit  $|z| \ge n$  eine Zerlegung z = uvwxy existiert, für die gilt:

- (a)  $|vwx| \leq n$ ,
- (b)  $|vx| \ge 1$  und
- (c)  $\forall i \in \mathbb{N}_0 : uv^i w x^i y \in L$ .

Im Folgenden wird gezeigt, dass ein Wort z existiert, so dass für alle Zerlegungen z = uvwxy ein  $i \in \mathbb{N}_0$  existiert, für welches unter der Annahme von (a) und (b) gilt:  $uv^iwx^iy \notin L$ .

Betrachte man nun das Wort  $z = a^n b^{n+1} c^{n+2}$ . Wegen (a)  $|vwx| \le n$  und (b)  $|vx| \ge 1$  können v und x mindestens eins und maximal zwei verschiedene Zeichen aus  $\{a, b, c\}$  enthalten. Es werden folgende Fälle unterschieden:

- (a) v und x enthalten genau zwei verschiedene Zeichen:
  - (1) a und b: vx enthält somit kein c. Jedes  $uv^iwx^iy$  mit  $i \ge 2$  ist dann nicht in der Sprache, weil  $|uv^iwx^iy|_a > |uv^iwx^iy|_c 2$  oder  $|uv^iwx^iy|_b 1 > |uv^iwx^iy|_c 2$ .
  - (2) *b* und *c*: vx enthält somit kein *a*. Jedes  $uv^iwx^iy$  mit i=0 ist dann nicht in der Sprache, weil  $|uv^iwx^iy|_c 2 < |uv^iwx^iy|_a$  oder  $|uv^iwx^iy|_b 1 < |uv^iwx^iy|_a$ .
- (b) v und x enthalten genau ein Zeichen:
  - (1) a: vx enthält somit kein b und kein c. Jedes  $uv^iwx^iy$  mit  $i \ge 2$  ist dann nicht in der Sprache, weil  $|uv^iwx^iy|_a > |uv^iwx^iy|_c 2$  oder  $|uv^iwx^iy|_a > |uv^iwx^iy|_b 1$ .
  - (2) b: vx enthält somit kein a und kein c. Jedes  $uv^iwx^iy$  mit i=0 ist dann nicht in der Sprache, weil  $|uv^iwx^iy|_b-1<|uv^iwx^iy|_a$  oder jedes  $uv^iwx^iy$  mit  $i\geq 2$  ist dann nicht in der Sprache, weil  $|uv^iwx^iy|_b-1>|uv^iwx^iy|_c-2$ .
  - (3) c: vx enthält somit kein a und kein b. Jedes  $uv^iwx^iy$  mit i=0 ist dann nicht in der Sprache, weil  $|uv^iwx^iy|_c 2 < |uv^iwx^iy|_a$  oder  $|uv^iwx^iy|_c 2 < |uv^iwx^iy|_b 1$ .

Daraus folgt ein Widerspruch, denn laut Pumping-Lemma sollte jedes gepumpte Wort ebenfalls in L liegen. Also müssen wir die ursprüngliche Annahme aufgeben, dass L eine kontextfreie Sprache ist.

**Bemerkung**: Achten Sie hier darauf, dass die gepumpten Wörter nicht Element der Sprache L sein dürfen. Es ist nicht ausreichend zu zeigen, dass die gepumpten Wörter nicht mehr der Struktur des gewählten Wortes w entsprechen.

3

Aufgabe 2

2013-B-02 Kellerautomat

Gegeben sei folgende Sprache L

$$L = \{u \# v \mid u,v \in \{a,b\}^\star, \ u = a^i b^n a^k, v = a^l b^n a^m; \ i < m; \ k < l; \ i,k,l,m,n \geq 1\}.$$

Es gilt beispielsweise

$$ab^{3}a^{4}a^{4}b^{3}a^{6}$$
,  $a^{2}ba^{2}^{4}a^{7}ba^{5} \in L$ ;  $ab^{4}ab$ ,  $a^{8}ba^{7}^{4}aba$ ,  $ab^{5}a^{4}a^{6}b^{2}a^{7} \notin L$ .

L ist also die Sprache aller Wörter w, die, getrennt durch #, aus zwei Teilen der Form  $a^*b^*a^*$  bestehen, also w = u#v. Dabei ist die Anzahl der b's in beiden Teilen gleich und die Anzahl der a's **vor** dem b in u kleiner als die Anzahl der a's **vor** dem b in u kleiner als die Anzahl der a's **vor** dem b in v und die Anzahl der a's **vor** dem b in v.

Geben Sie einen deterministischen Kellerautomaten  $KA = (E, S, K, \delta, s_0, k_0, F)$  mit L(KA) = L an. Geben Sie KA vollständig an.

Lösung:

$$KA = (\{a, b, \#\}, \{s_0, s_1, s_2, s_3, s_4, s_5\}, \{k_0, a, b\}, \delta, s_0, k_0, \{s_5\})$$

 $\delta$  :

$$\delta(s_0, a, k_0) = (s_0, ak_0)$$

$$\delta(s_0, a, a) = (s_0, aa)$$

$$\delta(s_0, b, a) = (s_0, ba)$$

$$\delta(s_0, b, b) = (s_0, bb)$$

$$\delta(s_0, a, b) = (s_1, ab)$$

$$\delta(s_1, a, a) = (s_1, aa)$$

$$\delta(s_1, \#, a) = (s_2, a)$$

$$\delta(s_2, a, a) = (s_2, \lambda)$$

$$\delta(s_2, a, b) = (s_3, b)$$

$$\delta(s_3, a, b) = (s_3, b)$$

$$\delta(s_3, b, b) = (s_4, \lambda)$$

$$\delta(s_4, b, b) = (s_4, \lambda)$$

$$\delta(s_4, a, a) = (s_4, \lambda)$$

$$\delta(s_4, a, k_0) = (s_5, k_0)$$

$$\delta(s_5, a, k_0) = (s_5, k_0)$$

### Aufgabe 3

2013-B-03

**Binary Decision Diagram (BDD)** 

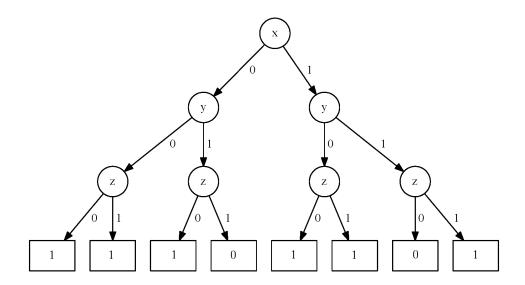
Gegeben sei die Boolesche Funktion

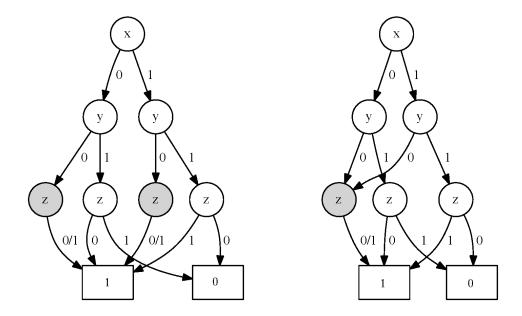
$$f: \mathbb{B}^3 \to \mathbb{B}: f(x, y, z) = \overline{(x \oplus z)} \vee \overline{y}$$

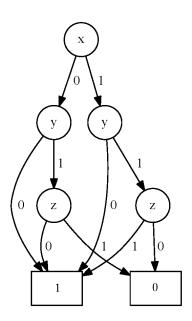
Erstellen Sie für die Funktion f ein Binary Decision Diagram mit der Variablenreihenfolge  $x \to y \to z$ . Lesen Sie aus dem berechneten BDD einen Booleschen Ausdruck in disjunktiver Normalform (DNF) ab.

**Bemerkung**: Die abgebildete Tabelle können Sie für Ihren Lösungsweg nutzen, sie wird aber nicht bewertet.

| x | y | z | $\overline{x \oplus z}$ | $\overline{(x \oplus z)} \vee \overline{y}$ |
|---|---|---|-------------------------|---------------------------------------------|
| 0 | 0 | 0 | 1                       | 1                                           |
| 0 | 0 | 1 | 0                       | 1                                           |
| 0 | 1 | 0 | 1                       | 1                                           |
| 0 | 1 | 1 | 0                       | 0                                           |
| 1 | 0 | 0 | 0                       | 1                                           |
| 1 | 0 | 1 | 1                       | 1                                           |
| 1 | 1 | 0 | 0                       | 0                                           |
| 1 | 1 | 1 | 1                       | 1                                           |







Disjunktive Normalform (DNF) aus dem BDD abgelesen:

$$f(x, y, z) = x'y' + x'yz' + xy' + xyz$$