

15.01.2018

Lösung zur Bonusklausur über den Stoff der Vorlesung "Grundlagen der Informatik II" (45 Minuten)

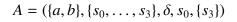
Name:	_							_	V	orn	am	ne:	_					
MatrNı	<u> </u>							_	Se	em	est	er:	_				_ (WS 2	2017/18)
Ich bestätig Klausurexe				-		_		_	ele	sen	un	d m	ich	VO	n de	er V	ollständi/	gkeit dieses
																_	Klausur	teilnehmers
Anmerkun	gen:																	
1. Legen	n Sie	bitte l	hren	Studie	erer	ıdeı	nau	swe	is t	ere	eit.							
2. Bitte	trage	n Sie	Name	e, Vor	nai	ne	und	l Ma	atr.	- N 1	r. d	eutl	lich	les	baı	eir	1.	
3. Die f	olgen	den 4	Aufg	aben	sin	d vo	olls	tänc	lig	zu	bea	rbe	iter	1.				
4. Folge	ende F	Hilfsn	nittel s	sind z	uge	lass	sen:	kei	ine									
5. Täuse	chung	svers	uche 1	führer	ı zu	m A	Aus	sch	lus	s vo	on d	ler I	Kla	usu	ır.			
			er mit			_	esch	riet	en	e L	ösü	ıng	en]	kön	inei	1 V(on der K	lausur bzw.
7. Die E	Bearbe	eitung	szeit	beträg	gt 4:	5 M	Iinu	ıten.										
Nur für den	Prüfer	·:																
	1	2	3	4	-	-	-	-	-	-	-	-	-	-	-	-	gesamt	

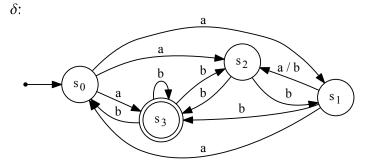
Aufgabenübersicht

1) Endliche Automaten	2
2) Kellerautomat	4
3) Schaltwerk	6
4) XWizard	8

2018-B-01 Endliche Automaten

Gegeben sei der folgende **nichtdeterministische** endliche Automat:





	a	b
s_0	$\{s_1, s_2, s_3\}$	0
s_1	$\{s_0, s_2\}$	$\{s_2, s_3\}$
s_2	Ø	$\{s_1, s_3\}$
S 3	Ø	$\{s_0, s_2, s_3\}$

Erstellen Sie mithilfe des aus der Vorlesung bekannten Algorithmus einen **deterministischen** endlichen Automaten $A' = (E', S', \delta', s'_0, F')$ mit L(A') = L(A) und geben Sie diesen vollständig an.

Hinweis: Geben Sie insbesondere ein Zustandsüberführungsdiagramm an. Nutzen Sie die vorgegebene Tabelle.

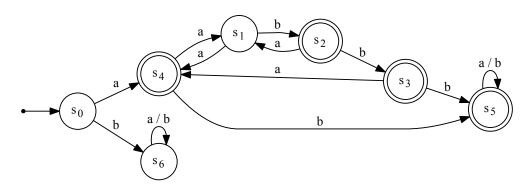
Lösung:

	а	b
$\{s_0\} \hat{=} s_0$	$\{s_1, s_2, s_3\} = s_4$	Ø≙ <i>s</i> ₆
$\{s_0, s_2\} = s_1$	$\{s_1, s_2, s_3\} = s_4$	$\{s_1, s_3\} = s_2$
$\{s_1, s_3\} = s_2$	$\{s_0, s_2\} \hat{=} s_1$	$\{s_0, s_2, s_3\} = s_3$
$\{s_0, s_2, s_3\} = s_3$	$\{s_1, s_2, s_3\} = s_4$	$\{s_0, s_1, s_2, s_3\} = s_5$
$\{s_1, s_2, s_3\} = s_4$	$\{s_0, s_2\} \hat{=} s_1$	$\{s_0, s_1, s_2, s_3\} = s_5$
$\{s_0, s_1, s_2, s_3\} = s_5$	$\{s_0, s_1, s_2, s_3\} = s_5$	$\{s_0, s_1, s_2, s_3\} = s_5$
Ø≘s ₆	Ø≘s ₆	Ø≙ <i>s</i> ₆

Hieraus ergibt sich der Automat:

$$A' = (\{a, b\}, \{s_0, \dots, s_6\}, \delta', s_0, \{s_2, s_3, s_4, s_5\})$$

 δ' :



mit der Zustandsüberführungstabelle:

	a	b
s_0	s_0	s_2
s_1	<i>S</i> ₃	<i>S</i> ₄
s ₂	s_1	<i>S</i> ₄
S 3	S 3	<i>S</i> ₄
<i>S</i> ₄	<i>S</i> ₃	<i>S</i> ₄

SKRIPT ID-26032

2018-B-02 Kellerautomat

Gegeben sei die Sprache aller Wörter w mit

$$L = \{ w \in \{a, b, c\}^* | w = a^m b^n c^k, \text{ mit } m, n \in \mathbb{N}, k \in \{m, n\} \}.$$

Das heißt, dass in einem Wort der Sprache L zuerst m-mal a, dann n-mal b geschrieben wird; auf diese Zeichenfolge folgt dann entweder m-mal oder n-mal c. Es gilt beispielsweise:

aaabc, aaabccc, abbcc, aabc, $\in L$, λ , aaa, bb, ac, abb, ababc, aabbc, $abbbcc \notin L$.

(a) Entwerfen Sie einen nichtdeterministischen Kellerautomaten

$$A = \left\{ \{a, b, c\}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e, s_4, s_5, s_6 \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} a, b \\ k \end{bmatrix}}, \delta, \underbrace{\begin{bmatrix} s_0 \\ s_0 \end{bmatrix}}, k_0, \underbrace{\begin{bmatrix} s_e \\ k \end{bmatrix}}\right\}$$

welcher die Sprache L erkennt. Der erste Teil des Kellerautomaten ist Ihnen im Folgenden bereits vorgegeben und erkennt alle Worte der Form $w = a^m b^n c^m$. Ergänzen Sie diesen Automaten, so dass er zusätzlich auch die Worte der Form $a^m b^n c^n$ erkennt.

(s_0,a,k_0)	\Rightarrow	(s_1, ak_0)	Lösung:		
(s_1,a,a)	\Rightarrow	(s_1,aa)	(s_0,a,k_0)	\Rightarrow	(s_4, k_0)
(s_1,b,a)	\Rightarrow	(s_2,a)	(s_4,a,k_0)	\Rightarrow	(s_4, k_0)
(s_2,b,a)			(s_4,b,k_0)		
			(s_5,b,b)		
(s_2, c, a)			(s_5,c,b)		
(s_3,c,a)	\Rightarrow	(s_3, Λ)	(s_6,c,b)		
(s_3,λ,k_0)	\Rightarrow	(s_e, k_0)	(s_6,λ,k_0)	\Rightarrow	(s_e, k_0)

(b) Ergänzen Sie die zusätzlich benötigten Übergänge unter der Annahme, dass $m, n \in \mathbb{N}_0$. Es gilt also beispielsweise zusätzlich

 λ , aacc, bbb, $bbcc \in L$.

Lösung:

1. kein a bei $a^m b^n c^m$

$$(s_0, b, k_0) \Rightarrow (s_2, k_0)$$

$$(s_2, b, k_0) \Rightarrow (s_2, k_0)$$

$$(s_2, \lambda, k_0) \Rightarrow (s_e, k_0)$$

2. kein b bei $a^m b^n c^m$

$$(s_1, c, a) \Rightarrow (s_3, \lambda)$$

3. kein a bei $a^m b^n c^n$

$$(s_0, b, k_0) \Rightarrow (s_5, bk_0)$$

4. kein b bei $a^m b^n c^n$

$$(s_4, \lambda, k_0) \Rightarrow (s_e, k_0)$$

5. zusätzlich muss $s_0 \in F$ gelten

SKRIPT ID-26304

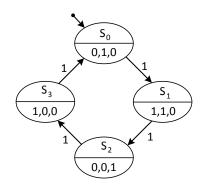
für a)

2018-B-03 Schaltwerk

Der gegebene Moore-Automat A beschreibt eine Ampelschaltung, bei der die Lichter der Ampel direkt durch die Signale q_{rot} , q_{gelb} und q_{gruen} an-, bzw. ausgeschaltet werden $(0 \Rightarrow \text{aus}, 1 \Rightarrow \text{an})$.

$$A = \left(\underbrace{\{1\}}_{\widehat{=}\text{Takt}}, \underbrace{\{0,1\}^3}_{\widehat{=}(q_{gelb}, q_{rot}, q_{gruen})}, \{s_0, \dots, s_3\}, \delta, \gamma, \{s_0\}\right)$$

 δ, γ :



Verbinden Sie die Eingänge der drei J-K-Flip-Flops in geeigneter Weise mit den Ausgangssignalen q_{rot} , q_{gelb} und q_{gruen} , sodass das Verhalten des Schaltwerks dem Automaten entspricht, also die Lichtfolge rot \rightarrow rot/gelb \rightarrow grün \rightarrow gelb \rightarrow rot \rightarrow u.s.w. entsteht. Füllen Sie dafür auch die gegebene Tabelle aus. Sie benötigen keine zusätzlichen Gatter.

Hinweis: Es kann vorkommen, dass die Belegung eines Eingangssignals für ein Flip-Flop sowohl 0 als auch 1 sein darf, z.B. wenn eine Eins am Ausgang sowohl durch Setzen dieser Eins (J = 1, K = 0), als auch durch Speichern von $q^* = 1$ aus dem vorhergehenden Takt (J = K = 0) erreicht werden kann. Tragen Sie in diesem Fall ein X in die Tabelle ein.

Lösung:

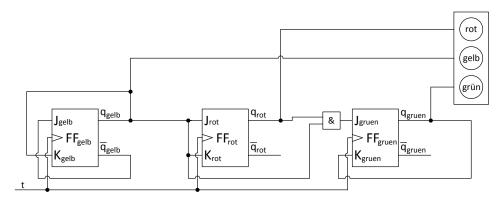
Ansteuerung eines *J-K*-Flip-Flops:

\int	K	q	
0	0	q^*	(save)
0	1	0	(reset)
1	0	1	(set)
1	1	$\neg q^*$	(toggle)

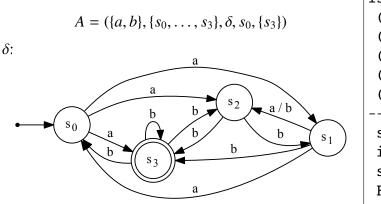
In jeder Zeile der Tabelle ist für jede benötigte Belegung des Tupels $(q_{gelb}, q_{rot}, q_{gruen})$ auch die dem Automaten entsprechende Vorgängerbelegung $(q_{gelb}^*, q_{rot}^*, q_{gruen}^*)$ gegeben, die aus dem letzten Takt noch an den Ausgängen der Flip-Flops anliegt. Das heißt zum Beispiel für die erste Zeile, wenn die Ampel auf gelb steht $((q_{gelb}^*, q_{rot}^*, q_{gruen}^*) = (1, 0, 0))$, muss auf rot umgeschaltet werden $((q_{gelb}, q_{rot}, q_{gruen}) = (0, 1, 0))$. Dies muss durch die Belegung der Eingangssignale J und K der Flip-Flops erreicht werden. In der ersten Zeile müssen also J_{gelb} und K_{gelb} so gesetzt werden, dass das Ausgangssignal q_{gelb} des ersten Flip-Flops sich von 1 zu 0 ändert. Dies kann entweder geschehen, indem der Ausgang explizit auf 0 gesetzt wird (durch $J_{gelb} = 0$ und $K_{gelb} = 1$), oder indem der Ausgang invertiert ("getoggelt") wird (durch $J_{gelb} = 1$ und $K_{gelb} = 1$). Das bedeutet, um die erwünschte Änderung am Ausgang des ersten Flip-Flops zu erreichen, muss K_{gelb} auf 1 gesetzt werden und die Belegung von J_{gelb} ist egal, da sowohl mit reset als auch mit toggle das gewünschte Ergebnis erzielt wird. Für J_{gelb} wird also ein K gesetzt. So werden für jeden Übergang $q_x^* \rightarrow q_x$ die erforderlichen Werte für J_x und K_x ermittelt ($x \in \{gelb, rot, gruen\}$).

	1>	0 0	>1	0> 0		reset od	ler toggle	set ode	er toggle	reset od	er save
q_{gelb}	q_{rot}	Igruen	q_{gelb}^*	q_{rot}^*	q_{gruen}^*	$J_{\it gelb}$	K_{gelb}	J_{rot}	Krot	J_{gruen}	Kgruen
0	1	0	1	0	0	X	1	1	X	0	X
1	1	0	0	1	0	1	X	X	0	0	X
0	0	1	1	1	0	X	1	X	1	1	X
1	0	0	0	0	1	1	X	0	X	X	1

Wenn die ganze Tabelle ausgefüllt und damit die nötige Ansteuerung für jeden Eingang der Flip-Flops bekannt ist, kann jeder Eingang mit einem Signal verbunden werden, das der entsprechenden Spalte der Tabelle entspricht. Zur Verfügung stehen dabei nur die Signale, die noch aus dem letzten Takt an den Ausgängen der Flip-Flops anliegen also q_{gelb}^* , q_{rot}^* und q_{gruen}^* . So können zum Beispiel die beiden nötigen Einsen für J_{gelb} zur Verfügung gestellt werden indem man J_{gelb} mit \overline{q}_{gelb}^* verbindet. In gleicher Weise kann K_{gelb} mit q_{gelb}^* verbunden werden, J_{rot} mit q_{gelb}^* , K_{rot} mit q_{gelb}^* , K_{gruen} mit q_{gruen}^* und J_{gruen} mit $(q_{gelb}^* \land q_{rot}^*)$.



2018-B-04 XWizard



```
fsm:
  (s0, a) => s3 | s1 | s2;
  (s1, a) => s2 | s0;
  (s1, b) => s3 | s2;
  (s2, b) => s3 | s1;
  (s3, b) => s0 | s2 | s3;
--declarations--
  simulateToStep=-1;
  input=null;
  s0=s0;
  F=s3;
--declarations-end--
```

Zum oben links abgebildeten Automaten A aus Aufgabe 1 gehöre das oben rechts abgebildete XWizard-Skript $A_{XSkript}$.

(a) Beschreiben Sie kurz, wie Sie vorgehen würden, um *A* mit XWizard deterministisch und minimal zu machen.

Lösung:

 $@\{A_{XSkript}\}@.det.min$

oder per GUI die Methoden Mache deterministisch und minimiere aufrufen.

(b) Beschreiben Sie kurz, wie Sie vorgehen würden, um A mit XWizard auf dem Wort abaabaa für drei Schritte zu simulieren.

Lösung:

 $@\{A_{XSkript}\}@.sim[abaabaa].sim.sim$

oder input=abaabaa und simulateToStep=3 eintragen.

oder per GUI die Methode Simuliere einen Schritt mehrmals aufrufen.

(c) Woran sieht man im Skript, dass *A* nicht deterministisch ist? Welche kennzeichnende Eigenschaft hätte ein Skript eines deterministischen Automaten?

Lösung: Auf der rechten Seite der => Zuweisungen stehen mehrere Folgezustände. In einem deterministischen Automatenskript würde auf jeder rechten Seite genau ein Zustand stehen.

Hinweise:

- Sie dürfen bei (a) und (b) auf Skript- **oder** GUI-Ebene beschreiben.
- Bei (c) müssen Sie das deterministische Skript **nicht** angeben, nur seine wesentliche Eigenschaft beschreiben.
- Die Aufgabe ist einfach, denken Sie nicht zu kompliziert!