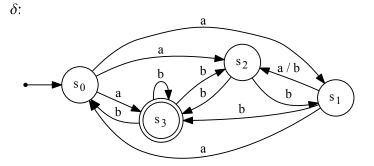


15.01.2018

Bonusklausur über den Stoff der Vorlesung "Grundlagen der Informatik II" (45 Minuten)

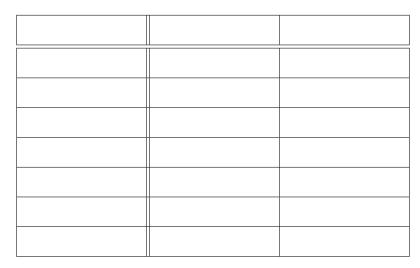
Name:	_							_ \	Vorn	an	ne:	_				
MatrNr	∷ _							_ 5	Sem	est	er:	_				_(WS 2017/18)
Ich bestätig Klausurexer				_		-		_	esen	un	d m	ich	. VC	on c	ler`	Vollständigkeit dieses
															_	Klausurteilnehmers eilnehmerin
Anmerkun	gen:															
1. Leger	Sie	bitte 1	Ihren	Studie	eren	de	nau	sweis	bere	eit.						
2. Bitte	trage	n Sie	Name	e, Vor	nar	ne	und	Mat	rN	r. d	eut	lich	le	sba	ır ei	n.
3. Die fo	olgen	den 4	Aufg	aben	sino	d v	olls	tändi	g zu	bea	rbe	iten	1.			
4. Folge	nde F	Hilfsn	nittel s	sind z	uge	las	sen:	kein	e.							
5. Täusc	hung	svers	uche 1	führer	ı zu	m A	Aus	schlu	ss vo	on d	ler	Kla	us	ur.		
			er mit			_	esch	riebe	ne L	öst	ıng	en]	kö	nne	en v	on der Klausur bzw.
7. Die B	earbe	eitung	szeit	beträg	gt 4:	5 M	Iinu	iten.								
Nur für den l			_										ı			
	1	2	3	4	-	-	-	- -	-	-	-	-	-	-	-	gesamt


Aufgabenübersicht

1) Endliche Automaten	2
2) Kellerautomat	3
3) Schaltwerk	4
4) XWizard	5

2018-B-01 Endliche Automaten

Gegeben sei der folgende nichtdeterministische endliche Automat:


$$A = (\{a, b\}, \{s_0, \dots, s_3\}, \delta, s_0, \{s_3\})$$

	а	b
s_0	$\{s_1, s_2, s_3\}$	0
s_1	$\{s_0, s_2\}$	$\{s_2, s_3\}$
s_2	Ø	$\{s_1, s_3\}$
s ₃	Ø	$\{s_0, s_2, s_3\}$

Erstellen Sie mithilfe des aus der Vorlesung bekannten Algorithmus einen **deterministischen** endlichen Automaten $A' = (E', S', \delta', s'_0, F')$ mit L(A') = L(A) und geben Sie diesen vollständig an.

Hinweis: Geben Sie insbesondere ein Zustandsüberführungsdiagramm an. Nutzen Sie die vorgegebene Tabelle.

 δ' :

2018-B-02 Kellerautomat

Gegeben sei die Sprache aller Wörter w mit

$$L = \{ w \in \{a, b, c\}^* | w = a^m b^n c^k, \text{ mit } m, n \in \mathbb{N}, k \in \{m, n\} \}.$$

Das heißt, dass in einem Wort der Sprache L zuerst m-mal a, dann n-mal b geschrieben wird; auf diese Zeichenfolge folgt dann entweder m-mal oder n-mal c. Es gilt beispielsweise:

aaabc, aaabccc, abbcc, aabc, $\in L$, λ , aaa, bb, ac, abb, ababc, aabbc, $abbbcc \notin L$.

(a) Entwerfen Sie einen nichtdeterministischen Kellerautomaten

$$A = \left(\{a, b, c\}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_3, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_2, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_2, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_2, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_2, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_2, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_2, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_2, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_2, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_2, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_2, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_2, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_2, s_e \\ s_0 \end{bmatrix}}, \underbrace{\begin{bmatrix} s_0, s_1, s_2, s_e \\$$

welcher die Sprache L erkennt. Der erste Teil des Kellerautomaten ist Ihnen im Folgenden bereits vorgegeben und erkennt alle Worte der Form $w = a^m b^n c^m$. Ergänzen Sie diesen Automaten, so dass er zusätzlich auch die Worte der Form $a^m b^n c^n$ erkennt.

$$(s_0, a, k_0) \Rightarrow (s_1, ak_0)$$

$$(s_1, a, a) \Rightarrow (s_1, aa)$$

$$(s_1, b, a) \Rightarrow (s_2, a)$$

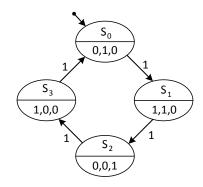
$$(s_2, b, a) \Rightarrow (s_2, a)$$

$$(s_2, c, a) \Rightarrow (s_3, \lambda)$$

$$(s_3, c, a) \Rightarrow (s_3, \lambda)$$

$$(s_3, \lambda, k_0) \Rightarrow (s_e, k_0)$$

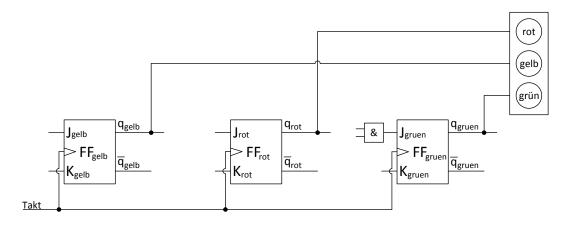
(b) Ergänzen Sie die zusätzlich benötigten Übergänge unter der Annahme, dass $m, n \in \mathbb{N}_0$. Es gilt also beispielsweise zusätzlich

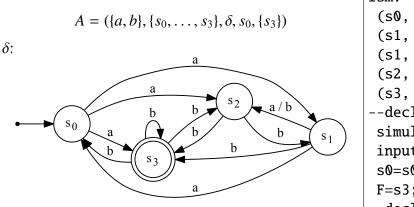

 λ , aacc, bbb, $bbcc \in L$.

2018-B-03 Schaltwerk

Der gegebene Moore-Automat A beschreibt eine Ampelschaltung, bei der die Lichter der Ampel direkt durch die Signale q_{rot} , q_{gelb} und q_{gruen} an-, bzw. ausgeschaltet werden $(0 \Rightarrow \text{aus}, 1 \Rightarrow \text{an})$.

$$A = \left(\underbrace{\{1\}}_{\widehat{\exists}\text{Takt}}, \underbrace{\{0,1\}^3}_{\widehat{\exists}(q_{gelb}, q_{rot}, q_{gruen})}, \{s_0, \dots, s_3\}, \delta, \gamma, \{s_0\}\right)$$


 δ, γ :


Verbinden Sie die Eingänge der drei J-K-Flip-Flops in geeigneter Weise mit den Ausgangssignalen q_{rot} , q_{gelb} und q_{gruen} , sodass das Verhalten des Schaltwerks dem Automaten entspricht, also die Lichtfolge rot \rightarrow rot/gelb \rightarrow grün \rightarrow gelb \rightarrow rot \rightarrow u.s.w. entsteht. Füllen Sie dafür auch die gegebene Tabelle aus. Sie benötigen keine zusätzlichen Gatter.

Hinweis: Es kann vorkommen, dass die Belegung eines Eingangssignals für ein Flip-Flop sowohl 0 als auch 1 sein darf, z.B. wenn eine Eins am Ausgang sowohl durch Setzen dieser Eins (J = 1, K = 0), als auch durch Speichern von $q^* = 1$ aus dem vorhergehenden Takt (J = K = 0) erreicht werden kann. Tragen Sie in diesem Fall ein X in die Tabelle ein.

q_{gelb}	q_{rot}	q_{gruen}	q_{gelb}^{st}	q_{rot}^*	q_{gruen}^*	J_{gelb}	K_{gelb}	J_{rot}	K _{rot}	J_{gruen}	K_{gruen}
0	1	0	1	0	0						
1	1	0	0	1	0						
0	0	1	1	1	0						
1	0	0	0	0	1						

2018-B-04 XWizard


```
fsm:
  (s0, a) => s3 | s1 | s2;
  (s1, a) => s2 | s0;
  (s1, b) => s3 | s2;
  (s2, b) => s3 | s1;
  (s3, b) => s0 | s2 | s3;
--declarations--
  simulateToStep=-1;
  input=null;
  s0=s0;
  F=s3;
--declarations-end--
```

Zum oben links abgebildeten Automaten A aus Aufgabe 1 gehöre das oben rechts abgebildete XWizard-Skript $A_{XSkript}$.

- (a) Beschreiben Sie kurz, wie Sie vorgehen würden, um *A* mit XWizard deterministisch und minimal zu machen.
- (b) Beschreiben Sie kurz, wie Sie vorgehen würden, um A mit XWizard auf dem Wort abaabaa für drei Schritte zu simulieren.
- (c) Woran sieht man im Skript, dass *A* nicht deterministisch ist? Welche kennzeichnende Eigenschaft hätte ein Skript eines deterministischen Automaten?

Hinweise:

- Sie dürfen bei (a) und (b) auf Skript- **oder** GUI-Ebene beschreiben.
- Bei (c) müssen Sie das deterministische Skript **nicht** angeben, nur seine wesentliche Eigenschaft beschreiben.
- Die Aufgabe ist einfach, denken Sie nicht zu kompliziert!