Theoretische und technische Informatik - ganz praktisch
Herzlich willkommen auf der Question/Answer-Plattform zu Grundlagen der Informatik II. Wir wünschen Ihnen viel Spaß beim Lernen und Diskutieren!
Loggen Sie sich mit Ihrem KIT-Account (u...) ein, um loszulegen!
Beachten Sie auch diese Informationen zum Schnelleinstieg.
(Nicht-KIT-Studierende beachten bitte diese Informationen.)

Beliebteste Tags

verständnis alternativlösung klausur kellerautomat endlicher-automat grammatik regulärer-ausdruck pumpinglemma turingmaschine tipp zahlendarstellung cmos klausurrelevant bonusklausur komplexität schaltwerk binary-decision-diagram deterministisch assembler schaltnetz minimierung sprachen nichtdeterministisch huffman chomsky-normalform fehler-in-aufgabe anwesenheitsübung rechtslinear heimübung flip-flop cocke-younger-kasami-algorithmus kontextsensitive-grammatik kontextfreie-grammatik fehlererkennbarkeit huffman-kodierung hauptklausur vorlesungsfolien kontextfreie-sprache polynomialzeitreduktion faq gleitkommazahl fehlerkorrigierbarkeit rechtslineare-grammatik dateiorganisation cache darstellung-klausur nachklausur xwizard adressierungsarten lambda mealy endliche-automaten konjunktive-normalform pipelining zustände saalübung leeres-wort ohne-lösungen betriebssystem speicherorganisation moore monotone-grammatik 2-komplement fehler reguläre-sprache hammingzahl monoton lösungsweg pumping-lemma-für-kontextfreie-sprachen kodierung berechenbarkeit pumping-lemma klausureinsicht disjunktive-normalform info-ii bussysteme rechnerarchitektur abzählbarkeit komplexitätsklassen ableitungsbaum vorlesungsaufzeichnung round-robin entscheidbarkeit minimierung-endlicher-automaten chomsky-klassen von-neumann-rechner binärzahl entscheidbar programmiersprachen aufzählbarkeit stern-symbol automaten schaltnetze-und-schaltwerke nukit-fragen bewertung zugriffsarten umformung adressierung mengen binär-subtrahieren

Kategorien

1 Pluspunkt 1 Minuspunkt
93 Aufrufe

Hallo,

Ich würde gerne wissen, ob meine Beantwortung der Frage auch richtig gewesen wäre.

Bis zu dem Punkt, an dem die Fallunterscheidung stattfindet würde ich gleich vorgehen.

Aber reicht es dann nicht aus, zu sagen:

Wegen $|vwx| \leq k$ können durch beliebiges Pumpen niemals die 0en oder 1sen in beiden Teilen des Wortes (also in a und b zugleich) verändert werden.

Dadurch ist die Stuktur $0^k 1^k 0^k 1^k$ bei beliebigem i immer veletzt. Denn das k für 0 bzw. 1 in a und das k für 0 bwz. 1 in b sind somit nicht mehr gleich groß.

Meiner Meinung nach ist das viel offensichtlicher und einfacher. Stimmt die Lösung und würde so akzeptiert werden oder habe ich einen Fehler darin?

Danke für die Hilfe!

 

in PUM-AJ von uafjv uafjv Tutor(in) (168k Punkte)  

1 Eine Antwort

0 Pluspunkte 0 Minuspunkte

Hey,

die Erklärung auf der Musterlösung ist einfach noch ausführlicher. Deine Erläuterung ist etwas knapp. Inwiefern das gewertet wird würden die Übungsleiter entscheiden.

LG, Yvonne (Tutor)

 

von uafjv uafjv Tutor(in) (168k Punkte)  
...