Theoretische und technische Informatik - ganz praktisch
Herzlich willkommen auf der Question/Answer-Plattform zu Grundlagen der Informatik II. Wir wünschen Ihnen viel Spaß beim Lernen und Diskutieren!
Loggen Sie sich mit Ihrem KIT-Account (u...) ein, um loszulegen!
Beachten Sie auch diese Informationen zum Schnelleinstieg.
(Nicht-KIT-Studierende beachten bitte diese Informationen.)

Beliebteste Tags

verständnis alternativlösung klausur kellerautomat endlicher-automat grammatik regulärer-ausdruck pumpinglemma turingmaschine tipp zahlendarstellung cmos klausurrelevant bonusklausur komplexität schaltwerk binary-decision-diagram deterministisch assembler schaltnetz minimierung sprachen nichtdeterministisch huffman chomsky-normalform fehler-in-aufgabe anwesenheitsübung rechtslinear heimübung flip-flop cocke-younger-kasami-algorithmus kontextsensitive-grammatik kontextfreie-grammatik fehlererkennbarkeit huffman-kodierung hauptklausur vorlesungsfolien kontextfreie-sprache polynomialzeitreduktion faq gleitkommazahl fehlerkorrigierbarkeit rechtslineare-grammatik dateiorganisation cache darstellung-klausur nachklausur xwizard adressierungsarten lambda mealy endliche-automaten konjunktive-normalform pipelining zustände saalübung leeres-wort ohne-lösungen betriebssystem speicherorganisation moore monotone-grammatik 2-komplement fehler reguläre-sprache hammingzahl monoton lösungsweg pumping-lemma-für-kontextfreie-sprachen kodierung berechenbarkeit pumping-lemma klausureinsicht disjunktive-normalform info-ii bussysteme rechnerarchitektur abzählbarkeit komplexitätsklassen ableitungsbaum vorlesungsaufzeichnung round-robin entscheidbarkeit minimierung-endlicher-automaten chomsky-klassen von-neumann-rechner binärzahl entscheidbar programmiersprachen aufzählbarkeit stern-symbol automaten schaltnetze-und-schaltwerke nukit-fragen bewertung zugriffsarten umformung adressierung mengen binär-subtrahieren

Kategorien

1 Pluspunkt 0 Minuspunkte
97 Aufrufe
(zu Aufgabenteil e)

Hallo,

könnte man das so begründen, dass die beiden trivialen Probleme auf einer echt kleineren Komplexitätsklasse als P sind? Und deswegen können sie auch im Falle P = NP nicht NP-vollständig sein?
bezieht sich auf eine Antwort auf: Teil e) Was bedeutet P = NP
in BER-AA von uxdko uxdko Lernwillige(r) (420 Punkte)  

1 Eine Antwort

1 Pluspunkt 0 Minuspunkte
Hier muss man mit der Polynomialzeitreduzierbarkeit argumentieren.

Ein Problem X heißt NP-schwer gdw. jedes Problem Q Element NP polynomialzeitreduzierbar auf X ist.
NP-vollständig benötigt zudem noch die Eigenschaft das X Element NP.

Für die beiden trivialen Probleme gilt aber, dass man keine anderen Probleme auf sie reduzieren kann. Das liegt daran, dass entweder alle oder keine Wörter Teil der entsprechenden Sprache {} bzw. E* sind, man findet also keine Elemente, auf die man true bzw. false abbilden kann. Bei der Reduktion müssen wir ja jedes Element x unseres zu reduzierenden Problems A auf ein Element y des Problems {} bzw. E* abbilden, sodass x in A genau dann, wenn y in {} bzw. E*. Für {} finden wir kein Element, falls x in A ist, und für E* finden wir keines, falls x nicht in A ist. Daher ist weder {} noch E* NP-schwer, egal, wie „leicht“ die Probleme aus NP sind.
von ufdrm ufdrm Tutor(in) (102k Punkte)  
...