Theoretische und technische Informatik - ganz praktisch
Herzlich willkommen auf der Question/Answer-Plattform zu Grundlagen der Informatik II. Wir wünschen Ihnen viel Spaß beim Lernen und Diskutieren!
Loggen Sie sich mit Ihrem KIT-Account (u...) ein, um loszulegen!
Beachten Sie auch diese Informationen zum Schnelleinstieg.
(Nicht-KIT-Studierende beachten bitte diese Informationen.)

Beliebteste Tags

verständnis alternativlösung klausur kellerautomat endlicher-automat grammatik regulärer-ausdruck pumpinglemma turingmaschine tipp zahlendarstellung cmos klausurrelevant bonusklausur komplexität schaltwerk binary-decision-diagram deterministisch assembler schaltnetz sprachen minimierung nichtdeterministisch huffman fehler-in-aufgabe chomsky-normalform anwesenheitsübung rechtslinear heimübung flip-flop cocke-younger-kasami-algorithmus kontextsensitive-grammatik kontextfreie-grammatik huffman-kodierung hauptklausur fehlererkennbarkeit vorlesungsfolien kontextfreie-sprache polynomialzeitreduktion faq gleitkommazahl fehlerkorrigierbarkeit rechtslineare-grammatik dateiorganisation cache darstellung-klausur nachklausur xwizard adressierungsarten lambda mealy konjunktive-normalform pipelining zustände saalübung leeres-wort endliche-automaten ohne-lösungen betriebssystem speicherorganisation moore monotone-grammatik 2-komplement fehler reguläre-sprache hammingzahl monoton lösungsweg pumping-lemma-für-kontextfreie-sprachen kodierung berechenbarkeit klausureinsicht disjunktive-normalform pumping-lemma info-ii bussysteme rechnerarchitektur abzählbarkeit komplexitätsklassen ableitungsbaum vorlesungsaufzeichnung round-robin minimierung-endlicher-automaten chomsky-klassen binärzahl entscheidbar programmiersprachen entscheidbarkeit aufzählbarkeit stern-symbol automaten nukit-fragen bewertung zugriffsarten von-neumann-rechner umformung adressierung mengen binär-subtrahieren organsiation

Kategorien

1 Pluspunkt 0 Minuspunkte
83 Aufrufe
(zu Aufgabenteil e)

Hallo,

könnte man das so begründen, dass die beiden trivialen Probleme auf einer echt kleineren Komplexitätsklasse als P sind? Und deswegen können sie auch im Falle P = NP nicht NP-vollständig sein?
bezieht sich auf eine Antwort auf: Teil e) Was bedeutet P = NP
in BER-AA von uxdko uxdko Lernwillige(r) (420 Punkte)  

1 Eine Antwort

1 Pluspunkt 0 Minuspunkte
Hier muss man mit der Polynomialzeitreduzierbarkeit argumentieren.

Ein Problem X heißt NP-schwer gdw. jedes Problem Q Element NP polynomialzeitreduzierbar auf X ist.
NP-vollständig benötigt zudem noch die Eigenschaft das X Element NP.

Für die beiden trivialen Probleme gilt aber, dass man keine anderen Probleme auf sie reduzieren kann. Das liegt daran, dass entweder alle oder keine Wörter Teil der entsprechenden Sprache {} bzw. E* sind, man findet also keine Elemente, auf die man true bzw. false abbilden kann. Bei der Reduktion müssen wir ja jedes Element x unseres zu reduzierenden Problems A auf ein Element y des Problems {} bzw. E* abbilden, sodass x in A genau dann, wenn y in {} bzw. E*. Für {} finden wir kein Element, falls x in A ist, und für E* finden wir keines, falls x nicht in A ist. Daher ist weder {} noch E* NP-schwer, egal, wie „leicht“ die Probleme aus NP sind.
von ufdrm ufdrm Tutor(in) (102k Punkte)  
...