Theoretische und technische Informatik - ganz praktisch
Herzlich willkommen auf der Question/Answer-Plattform zu Grundlagen der Informatik II. Wir wünschen Ihnen viel Spaß beim Lernen und Diskutieren!
Loggen Sie sich mit Ihrem KIT-Account (u...) ein, um loszulegen!
Beachten Sie auch diese Informationen zum Schnelleinstieg.
(Nicht-KIT-Studierende beachten bitte diese Informationen.)

Beliebteste Tags

verständnis alternativlösung klausur kellerautomat endlicher-automat grammatik regulärer-ausdruck pumpinglemma turingmaschine tipp zahlendarstellung cmos klausurrelevant bonusklausur komplexität schaltwerk binary-decision-diagram deterministisch assembler schaltnetz sprachen minimierung nichtdeterministisch huffman fehler-in-aufgabe chomsky-normalform anwesenheitsübung rechtslinear heimübung flip-flop cocke-younger-kasami-algorithmus kontextsensitive-grammatik kontextfreie-grammatik huffman-kodierung hauptklausur fehlererkennbarkeit vorlesungsfolien kontextfreie-sprache polynomialzeitreduktion faq gleitkommazahl fehlerkorrigierbarkeit rechtslineare-grammatik dateiorganisation cache darstellung-klausur nachklausur xwizard adressierungsarten lambda mealy konjunktive-normalform pipelining zustände saalübung leeres-wort endliche-automaten ohne-lösungen betriebssystem speicherorganisation moore monotone-grammatik 2-komplement fehler reguläre-sprache hammingzahl monoton lösungsweg pumping-lemma-für-kontextfreie-sprachen kodierung berechenbarkeit klausureinsicht disjunktive-normalform pumping-lemma info-ii bussysteme rechnerarchitektur abzählbarkeit komplexitätsklassen ableitungsbaum vorlesungsaufzeichnung round-robin minimierung-endlicher-automaten chomsky-klassen binärzahl entscheidbar programmiersprachen entscheidbarkeit aufzählbarkeit stern-symbol automaten nukit-fragen bewertung zugriffsarten von-neumann-rechner umformung adressierung mengen binär-subtrahieren organsiation

Kategorien

1 Pluspunkt 0 Minuspunkte
40 Aufrufe
Hallo,

kann ich mit dem Pumping Lemma nicht beweisen, dass das Wort
\( w = 1^n 2^{2n} 3^{3n}\)  nicht in Typ3 liegt?
Da \( |xy| \leq n\), kann xy höchstens aus 1 bestehen.
Wenn ich mit z.B. i = 5 pumpe, dann steht da:
\( 1(n-j+5j) 2^{2n}3^{3n} \) und das ist meines Erachtens nicht Element der Sprache.
Oder wo ist mein Denkfehler?

Viele Grüße & Dank!
in 2011-N-02 von uafjv uafjv Tutor(in) (168k Punkte)  

1 Eine Antwort

0 Pluspunkte 0 Minuspunkte

Ich vermute, du gehst davon aus, dass die Anzahl der 2er doppelt so groß wie die der 1er sein muss und die der 3er dreimal so groß. Die Sprache schreibt aber nur vor, dass die Anzahl der 2er gerade und die der 3er durch drei teilbar sein muss.

Beispiel an der ursprünglichen Grammatik:

S -> XYZ -> 1XYZ -> 1X 22 Z -> 11X 22 Z -> 11X 22 333 -> 111X 22 333 -> 1111 22 333

Deshalb liegt \(1(n-j+5j)2^{2n}3^{3n}\) innerhalb der Sprache. (Über X -> 1X | 1 kann man beliebig viele 1en erzeugen, ohne Auswirkungen auf den 2er bzw. 3er Block ...)

Die Sprache der Wörter der Bauart \( 1^n 2^{2n} 3^{3n} \) ist nicht vom Typ 3 (siehe dein Pumping-Lemma-Beweis)

Gruß,

Tobias (Tutor)

von uafjv uafjv Tutor(in) (168k Punkte)  
...