Theoretische und technische Informatik - ganz praktisch
Herzlich willkommen auf der Question/Answer-Plattform zu Grundlagen der Informatik II. Wir wünschen Ihnen viel Spaß beim Lernen und Diskutieren!
Loggen Sie sich mit Ihrem KIT-Account (u...) ein, um loszulegen!
Beachten Sie auch diese Informationen zum Schnelleinstieg.
(Nicht-KIT-Studierende beachten bitte diese Informationen.)

Beliebteste Tags

verständnis alternativlösung klausur kellerautomat endlicher-automat grammatik regulärer-ausdruck pumpinglemma turingmaschine tipp zahlendarstellung cmos klausurrelevant bonusklausur komplexität schaltwerk binary-decision-diagram deterministisch assembler schaltnetz sprachen minimierung nichtdeterministisch huffman fehler-in-aufgabe chomsky-normalform anwesenheitsübung rechtslinear heimübung flip-flop cocke-younger-kasami-algorithmus kontextsensitive-grammatik kontextfreie-grammatik huffman-kodierung hauptklausur fehlererkennbarkeit vorlesungsfolien kontextfreie-sprache polynomialzeitreduktion faq gleitkommazahl fehlerkorrigierbarkeit rechtslineare-grammatik dateiorganisation cache darstellung-klausur nachklausur xwizard adressierungsarten lambda mealy konjunktive-normalform pipelining zustände saalübung leeres-wort endliche-automaten ohne-lösungen betriebssystem speicherorganisation moore monotone-grammatik 2-komplement fehler reguläre-sprache hammingzahl monoton lösungsweg pumping-lemma-für-kontextfreie-sprachen kodierung berechenbarkeit klausureinsicht disjunktive-normalform pumping-lemma info-ii bussysteme rechnerarchitektur abzählbarkeit komplexitätsklassen ableitungsbaum vorlesungsaufzeichnung round-robin minimierung-endlicher-automaten chomsky-klassen binärzahl entscheidbar programmiersprachen entscheidbarkeit aufzählbarkeit stern-symbol automaten nukit-fragen bewertung zugriffsarten von-neumann-rechner umformung adressierung mengen binär-subtrahieren organsiation

Kategorien

3 Pluspunkte 0 Minuspunkte
56 Aufrufe
Hallo,
 
ich bin etwas verwirrt, aufgrund von Aufgabe 3 b) des 1 Tuts.
 
Das leere Wort liegt hier ja laut Definition in der Sprache, wenn man sich den Automaten anschaut sieht man aber doch, dass man nach Eingabe von 'nichts' noch in $s_0$ ist und somit nicht im Endzustand.
 
Ist doch sowieso etwas widersprüchlich, dass mindestens eine Eins in jedem Wort der Sprache sein muss, die Länge jedes Wortes also mindestens $1$ beträgt aber das leere Wort auch dazugehört. Oder habe ich das Konzept hinter $\lambda$ noch nicht durchschaut?
 
Danke im Voraus!
in AU-1-2 von uxdui Tutor(in) (103k Punkte)  
Bearbeitet von
0 0
Sie haben diese Frage in der falschen Kategorie gepostet. Ich werde versuchen sie in die richtige, nämlich Übungsblatt 1 => AU-1-2 zu verschieben. Bitte achten Sie in Zukunft auf die richtige Kategorie. Am besten klicken Sie einfach unter der Aufgabe auf die ID (AU-1-2).

1 Eine Antwort

0 Pluspunkte 0 Minuspunkte
 
Beste Antwort

Wie kommen Sie darauf, dass das leere Wort Teil der Sprache sein soll? Da steht

$$|w|_1 > 0$$

was soviel bedeutet, wie dass die Anzahl der Einsen im Wort größer als 0 sein muss. Dadurch kann das Wort ja nicht leer sein.

(Ich sehe gar nicht, wo Sie ein $\lambda$ in der Aufgabenstellung entdeckt haben.)

Rein prinzipiell haben Sie aber recht: Bei endlichen Automaten gilt, dass das leere Wort genau dann Teil der Sprache des EA ist, wenn der Startzustand gleichzeitig ein Endzustand ist.

von Dozent (10.1m Punkte)  
ausgewählt von uxdui
0 0
Ich dachte durch * und + in der Menge wird definiert, ob die leere Menge Teil der Sprache ist oder nicht?
0 0
Das stimmt auch, $\{0, 1\}^\star$ enthält das leere Wort. Aber man muss ja die gesamte Mengendefinition anschauen, und weiter hinten wird das leere Wort eben doch wieder ausgeschlossen. Die o.a. Menge enthält auch die Wörter $0, 00, 000, \ldots$, und diese sind in der Gesamtmenge ja auch nicht enthalten.
0 0
Aber das ist trotzdem eine gute Frage, die bestimmt anderen auch beim Verständnis helfen wird! Ich habe gerade einen "Upvote" vergeben.
0 0
Ah stimmt, Danke.
So weit hatte ich noch nicht gedacht^^
0 0
Um Ihren Kommilitonen bei der Übersicht zu helfen, können Sie übrigens (1) gute Antworten "upvoten" und/oder (2) auf den Stern klicken, wenn Ihre Frage beantwortet worden ist.
...