Theoretische und technische Informatik - ganz praktisch
Herzlich willkommen auf der Question/Answer-Plattform zu Grundlagen der Informatik II. Wir wünschen Ihnen viel Spaß beim Lernen und Diskutieren!
Loggen Sie sich mit Ihrem KIT-Account (u...) ein, um loszulegen!
Beachten Sie auch diese Informationen zum Schnelleinstieg.
(Nicht-KIT-Studierende beachten bitte diese Informationen.)

Schöne Ferien!
 

 

Huffmann-Baum

+1 Punkt
261 Aufrufe
Kann man bei dem Huffmann-Baum anstatt "O" und "F" miteinander zur sechs zu verbinden, auch jeweils das "F" mit einer 2 verbinden und das "O" mit der anderen 2? (Da 2+3 < 3+3 oder habe ich da etwas falsch verstanden?)
Gefragt 5, Feb 2016 in KOD-AG von unego unego Lernwillige(r) (220 Punkte)  

Eine Antwort

+2 Punkte
 
Beste Antwort
Hallo unego!

Zunächst mal denke ich, dass in deiner Frage ein Tippfehler steckt: Du meinst doch sicher "O" und "E" statt "O" und "F", oder?

Beim Huffman-Baum musst du immer die geringsten Wahrscheinlichkeiten bzw. Häufigkeiten zuerst zusammenfassen. In dem Falle also erstmal alle Buchstaben mit der Häufigkeit 1 paarweise zu 2er-Knoten (1+1=2).

So, nun suchst du wieder die geringsten Häufigkeiten. Das sind die soeben erzeugten 2er -Knoten und der Buchstabe "N", der selbst die absolute Häufigkeit 2 hat. Als fasst du je zwei dieser Knoten zu einem 4er-Knoten zusammen (2+2=4).

Jetzt hälst du wieder nach den geringesten Häufigkeiten Auschau und hier ergibt sich nun die Zusammenfassung von "O" und "E" zu einem 6er-Knoten (3+3=6). Alle 2er-Knoten wurden im vorigen Schritt bereits zu 4er-Knoten zusammengefasst und können daher nicht mehr mit "O" oder "E" kombiniert werden, da ihre Häufigkeit (4) nicht minimal ist (die Häufigkeit von "O" und "E" ist jeweils 3, damit geringer (3<4) und deshalb müssen die beiden Knoten "O" und "E" zusammengefasst werden).

Der Rest des Baumes ergibt sich analog.

Ich hoffe, das hilft dir weiter!
 

Viele Grüße,
Janine (Tutorin)
Beantwortet 5, Feb 2016 von uedqi uedqi Tutor(in) (108,510 Punkte)  
ausgewählt 5, Feb 2016 von unego unego
Ja, dass soll O und E heißen.
Vielen Dank für deine Antwort!
...