Theoretische und technische Informatik - ganz praktisch
Herzlich willkommen auf der Question/Answer-Plattform zu Grundlagen der Informatik II. Wir wünschen Ihnen viel Spaß beim Lernen und Diskutieren!
Loggen Sie sich mit Ihrem KIT-Account (u...) ein, um loszulegen!
Beachten Sie auch diese Informationen zum Schnelleinstieg.
(Nicht-KIT-Studierende beachten bitte diese Informationen.)

Beliebteste Tags

verständnis alternativlösung klausur kellerautomat endlicher-automat grammatik regulärer-ausdruck pumpinglemma turingmaschine tipp zahlendarstellung cmos klausurrelevant bonusklausur komplexität schaltwerk binary-decision-diagram deterministisch assembler schaltnetz minimierung sprachen nichtdeterministisch huffman chomsky-normalform fehler-in-aufgabe anwesenheitsübung rechtslinear heimübung flip-flop cocke-younger-kasami-algorithmus kontextsensitive-grammatik kontextfreie-grammatik fehlererkennbarkeit huffman-kodierung hauptklausur vorlesungsfolien kontextfreie-sprache polynomialzeitreduktion faq gleitkommazahl fehlerkorrigierbarkeit rechtslineare-grammatik dateiorganisation cache darstellung-klausur nachklausur xwizard adressierungsarten lambda mealy endliche-automaten konjunktive-normalform pipelining zustände saalübung leeres-wort ohne-lösungen betriebssystem speicherorganisation moore monotone-grammatik 2-komplement fehler reguläre-sprache hammingzahl monoton lösungsweg pumping-lemma-für-kontextfreie-sprachen kodierung berechenbarkeit pumping-lemma klausureinsicht disjunktive-normalform info-ii bussysteme rechnerarchitektur abzählbarkeit komplexitätsklassen ableitungsbaum vorlesungsaufzeichnung round-robin entscheidbarkeit minimierung-endlicher-automaten chomsky-klassen von-neumann-rechner binärzahl entscheidbar programmiersprachen aufzählbarkeit stern-symbol automaten schaltnetze-und-schaltwerke nukit-fragen bewertung zugriffsarten umformung adressierung mengen binär-subtrahieren

Kategorien

0 Pluspunkte 0 Minuspunkte
313 Aufrufe
Hallo,

es ist folgende GPZ nach 1.4.2 gegeben: 0.1000.01

Mein Gedankengang:

Da hier ja c weder gleich 0 noch maximal ist, haben wir keinen Spezialfall, somit steht die erste Stelle nach dem zweiten Punkt für 2^(-1) und die zweite Stelle für 2^(-2).

Nun ergibt sich folgendes:

c= 8, somit steht dort doch: 2(1+2^(-2))

In der Musterlösung steht allerdings 2(a+2^(-1)). Wie kommt man auf die 2^(-1)?

Danke
in 2010-H-06 von  
0 0
Hallo,

also ich sehe in der Musterlösung genau dein Ergebnis. Woher kommt denn das a bei deiner Frage? (2(a+2^(-1))

Christian (Tutor)

Ihre Antwort

Ihr anzuzeigender Name (optional):
Datenschutzhinweis: Ihre E-Mail-Adresse wird ausschließlich benutzt, um Ihnen Benachrichtigungen zu schicken. Es gilt die Datenschutzerklärung.
Anti-Spam-Abfrage (Captcha):
Bitte loggen Sie ein oder registrieren sich, um diese Abfrage (Captcha) zu vermeiden.
...