Theoretische und technische Informatik - ganz praktisch
Herzlich willkommen auf der Question/Answer-Plattform zu Grundlagen der Informatik II. Wir wünschen Ihnen viel Spaß beim Lernen und Diskutieren!
Loggen Sie sich mit Ihrem KIT-Account (u...) ein, um loszulegen!
Beachten Sie auch diese Informationen zum Schnelleinstieg.
(Nicht-KIT-Studierende beachten bitte diese Informationen.)

Beliebteste Tags

verständnis alternativlösung klausur kellerautomat endlicher-automat grammatik regulärer-ausdruck turingmaschine pumpinglemma tipp zahlendarstellung cmos bonusklausur klausurrelevant komplexität schaltwerk binary-decision-diagram deterministisch assembler schaltnetz minimierung sprachen nichtdeterministisch huffman chomsky-normalform fehler-in-aufgabe anwesenheitsübung rechtslinear heimübung flip-flop huffman-kodierung cocke-younger-kasami-algorithmus kontextsensitive-grammatik kontextfreie-grammatik fehlererkennbarkeit hauptklausur vorlesungsfolien polynomialzeitreduktion kontextfreie-sprache faq gleitkommazahl fehlerkorrigierbarkeit rechtslineare-grammatik dateiorganisation cache darstellung-klausur nachklausur xwizard adressierungsarten mealy lambda endliche-automaten konjunktive-normalform pipelining zustände saalübung leeres-wort moore ohne-lösungen betriebssystem speicherorganisation monotone-grammatik 2-komplement hammingzahl lösungsweg fehler pumping-lemma-für-kontextfreie-sprachen pumping-lemma reguläre-sprache monoton kodierung berechenbarkeit klausureinsicht disjunktive-normalform abzählbarkeit info-ii bussysteme rechnerarchitektur entscheidbarkeit komplexitätsklassen chomsky-klassen ableitungsbaum vorlesungsaufzeichnung round-robin aufzählbarkeit minimierung-endlicher-automaten von-neumann-rechner binärzahl entscheidbar programmiersprachen stern-symbol automaten schaltnetze-und-schaltwerke nukit-fragen bewertung zugriffsarten umformung adressierung mengen binär-subtrahieren

Kategorien

3 Pluspunkte 0 Minuspunkte
154 Aufrufe
Hallo,

wieso ist die Verkettung aus $g$ und $f$ nicht $(n^p)^q = n^{pq}$ sondern $n^p + n^q$? Wenn $f= x^2$ ist und $g =x^3$, dann ist die verkettung auch $x^6$.

Viele Grüße
in AU-3-3 von  
Bearbeitet von

1 Eine Antwort

0 Pluspunkte 0 Minuspunkte

Es muss tatsächlich gelten $h \in O(n^{pq})$. Ihre Argumentation is korrekt, denn $g$ operiert nicht auf $n$, sondern auf $f(n)$, und $f(n)$ kann eine bis zu polynomiell größere Eingabe sein als $n$.

Einen formellen Beweis für den allgemeinen Fall, wenn $f$ und $g$ einer beliebigen Wachstumsklasse angehören, finden Sie hier. Der allgemeine Fall ist sogar noch ein bisschen komplizierter.

Wir werden die Lösung enstprechend anpassen und eine überarbeitete Version hochladen.

Marlon Braun (Übungsleiter)

von Marlon Braun Übungsleiter(in) (1.0m Punkte)  
...